燃料ノズル設計解析

報告書番号: R24JBA30201

利用分野:航空技術

URL: https://www.jss.jaxa.jp/ar/j2024/27396/

● 責任者

山根敬, 航空技術部門コアエンジン技術実証(En-Core)プロジェクトチーム

● 問い合せ先

国立研究開発法人 宇宙航空研究開発機構 コアエンジン技術実証プロジェクトチーム 松浦一哲 (matsuura.kazuaki@jaxa.jp)

● メンバ

松浦 一哲, 飯野 淳, 齋藤 欣也, 坂田 訓彦, 吉田 彩

● 事業概要

燃料ノズルの設計に必要な熱流体解析を実施する.

● JAXA スーパーコンピュータを使用する理由と利点

形状の複雑な燃料ノズルの熱流体解析は解析負荷が大きいため、スパコンの利用は不可避である.

● 今年度の成果

同軸ステージ型希薄燃焼用燃料ノズルを対象として,燃料流路コーキング防止のための熱防御に関わる数値解析を実施した.各飛行条件を想定した燃焼試験を実施し,燃料流路近傍の金属部内に設置された熱電対により温度を計測し,同環境を模擬した数値解析と比較した.両者の結果の一致は良好であり,しかも数値解析結果の方が若干温度が高い側(安全を見込んだ側,評価ツールとしては好ましい側)の結果を示した.

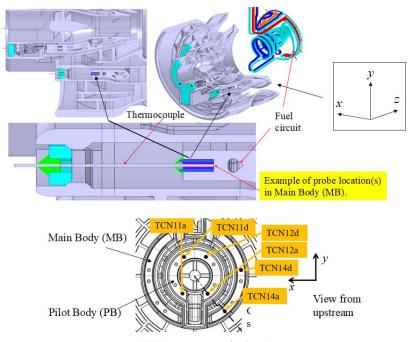


図 1: 燃料ノズル温度計測位置

$\Delta T_{n,p} = (T_{p,EXP} - T_{p,CHT})/(T3 - T_{f,in})$						
	Pilot Body			Main Body		
	TCN	TCN	TCN	TCN	TCN	TCN
	11a	12a	11d	12d	14a	14d
IDL-E	-0.016	-0.013	-0.027	-0.023	-0.041	-0.045
FIDL-E	-0.020	-0.018	-0.029	-0.026	-0.046	-0.047
APP-E	-0.005	-0.003	-0.016	-0.015	-0.029	-0.036
APP060-E	-0.009	-0.008	-0.020	-0.019	-0.037	-0.043
CRZ020-E	-0.028	-0.026	-0.039	-0.037	-0.048	-0.053
MCL-E*	-0.018	-0.019	-0.024	-0.020	-0.047	-0.049

EXP: Experiment

CHT: Conjugate heat transfer simulation

図 2: 温度計測点における実験と解析の温度差異 (規格化表示)

● 成果の公表

-査読なし論文

MATSUURA, K. and YAMAMOTO, T.: Development of anti-coking thermal management technologies for a coaxially-staged lean-burn fuel injector for high-pressure-ratio aero-engines. ~ First report: Evaluation of thermal protection performance and validation of numerical analysis by experiments in realistic environments. ~, JAXA-RM-24-008E (2025).

-Web

https://jaxa.repo.nii.ac.jp/records/2001693

● JSS 利用状況

● 計算情報

プロセス並列手法	MPI
スレッド並列手法	非該当
プロセス並列数	1024
1ケースあたりの経過時間	144 時間

● JSS3 利用量

総資源に占める利用割合※1(%): 1.30

内訳

計算資源				
計算システム名	CPU 利用量(コア・時)	資源の利用割合※2 (%)		
TOKI-SORA	34,088,448.35	1.56		
TOKI-ST	350,998.79	0.36		
TOKI-GP	0.00	0.00		
TOKI-XM	0.00	0.00		
TOKI-LM	0.00	0.00		
TOKI-TST	0.00	0.00		
TOKI-TGP	0.00	0.00		
TOKI-TLM	0.00	0.00		

ファイルシステム資源			
ファイルシステム名	ストレージ割当量(GiB)	資源の利用割合※2 (%)	
/home	228.45	0.15	
/data 及び/data2	170,521.67	0.82	
/ssd	0.00	0.00	

	アーカイバ資源	
アーカイバシステム名	利用量(TiB)	資源の利用割合※2 (%)
J-SPACE	0.09	0.00

※1 総資源に占める利用割合:3 つの資源(計算,ファイルシステム,アーカイバ)の利用割合の加重平均 ※2 資源の利用割合:対象資源一年間の総利用量に対する利用割合

● ISV 利用量

ISV ソフトウェア資源				
	利用量(時)	資源の利用割合※2 (%)		
ISV ソフトウェア(合計)	0.00	0.00		

※2 資源の利用割合:対象資源一年間の総利用量に対する利用割合