Studies on nonlinear vortex dynamics in the later-stage of laminar-turbulent transition in compressible boundary layers Report Number: R24EACA13 Subject Category: JSS Inter-University Research URL: https://www.jss.jaxa.jp/en/ar/e2024/27526/ ## Responsible Representative Kazuo Matsuura, Associate Professor, Ehime University, Graduate School of Science and Engineering #### Contact Information Kazuo Matsuura(kazuo.matsuura@g.matsuyama-u.ac.jp) #### Members Kazuo Matsuura #### Abstract In hypersonic transitional flows, there are many complicated factors such as density fluctuation and temperature fluctuation due to the co-existence of the region slower than the speed of sound and the region faster than the speed of sound inside the boundary layer. Detailed investigations into the vortex dynamics occurring inside the boundary layers are expected. In this study, we aim to clarify the nonlinear vortex dynamics especially in the late-stage by conducting direct numerical simulations of laminar-turbulent transition in compressible boundary layers observed in hypersonic flows. Also, we develop a mathematical methodology to directly introduce vortices responsible for the late stage to the boundary layers, and its computational methods. ### Reasons and benefits of using JAXA Supercomputer System For the investigation of boundary layer transition of hypersonic flows, numerical simulation is a central tool because measurement is difficult due to the existence of acoustical disturbance in a wind tunnel. Because boundary layer transition is susceptible to disturbance, and in addition transition is hard to occur due to strong compressibility, powerful supercomputers that enable high-accuracy large-scale computation are necessary to get results in a short time period. #### Achievements of the Year Simulations of supersonic free shear layer, jet shear layer, and boundary layer were performed, and the structure of disturbances amplified as a result of instabilities was analyzed by applying hierarchical eddy clustering and Liutex eddy visualization methods to the obtained data. Simulations of a ring-tone feedback system in low Mach number flow were also performed, and the feedback mechanism and quantitative prediction of the peak frequency were obtained. ## Publications N/A ## Usage of JSS ## • Computational Information | Process Parallelization Methods | MPI | |---------------------------------|---------------------------| | Thread Parallelization Methods | Automatic Parallelization | | Number of Processes | 16 - 128 | | Elapsed Time per Case | 168 Hour(s) | ## JSS3 Resources Used Fraction of Usage in Total Resources*1(%): 0.02 ## Details | Computational Resources | | | |-------------------------|-----------------------------------|------------------------| | System Name | CPU Resources Used (core x hours) | Fraction of Usage*2(%) | | TOKI-SORA | 512,406.08 | 0.02 | | TOKI-ST | 368.72 | 0.00 | | TOKI-GP | 0.00 | 0.00 | | TOKI-XM | 0.00 | 0.00 | | TOKI-LM | 147.74 | 0.01 | | TOKI-TST | 0.00 | 0.00 | | TOKI-TGP | 0.00 | 0.00 | | TOKI-TLM | 0.00 | 0.00 | | File System Resources | | | |-----------------------|------------------------|-------------------------| | File System Name | Storage Assigned (GiB) | Fraction of Usage*2 (%) | | /home | 0.00 | 0.00 | | /data and /data2 | 0.00 | 0.00 | | /ssd | 0.00 | 0.00 | | Archiver Resources | | | |--------------------|--------------------|-------------------------| | Archiver Name | Storage Used (TiB) | Fraction of Usage*2 (%) | | J-SPACE | 0.00 | 0.00 | ^{*1:} Fraction of Usage in Total Resources: Weighted average of three resource types (Computing, File System, and Archiver). ## • ISV Software Licenses Used | ISV Software Licenses Resources | | | |----------------------------------|------------------------------------|-------------------------| | | ISV Software Licenses Used (Hours) | Fraction of Usage*2 (%) | | ISV Software Licenses
(Total) | 0.00 | 0.00 | ^{*2:} Fraction of Usage: Percentage of usage relative to each resource used in one year. ^{*2:} Fraction of Usage: Percentage of usage relative to each resource used in one year.