Precise Orbit Determination by using MADOCA on JSS3

Report Number: R23ER0800 Subject Category: Space Technology URL: https://www.jss.jaxa.jp/en/ar/e2023/23634/

Responsible Representative

Satoshi Kogure, Space Technology Directrate I, Satellite Navigation Unit

Contact Information

Hiroshi Takiguchi(takiguchi.hiroshi@jaxa.jp)

Members

Sho Miyoshi, Tatsuya Nagano, Hideki Narita, Masato Okeya, Takashi Tsuruta, Hiroshi Takiguchi, Makoto Watanabe

Abstract

Satellite Navigation Unit has been generating the precise orbit and clock products of GNSS satellites by using MADOCA (Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis), and been providing to user via network routinely. On the JSS3, we aim to realize fast computation for the long-term data analysis and simulation.

Ref. URL: https://ssl.tksc.jaxa.jp/madoca/public/public_index_en.html

Reasons and benefits of using JAXA Supercomputer System

To improve the MADOCA products accuracy, we need to do long-term data analysis. By using JSS3, we have been expecting the reduction of the data analysis time.

Achievements of the Year

In this fiscal year, we used JSS3 for the following research and development:

- 1) Backup analysis for MADOCA routine analysis
- 2) Implementation of simulated analysis function using new observable for MADOCA
- 2-1) Generation of simulated observation data
- 2-2) Precise orbit determination simulation using simulated observation data
- 3) Positioning analysis using MADOCA products
- 3-1) Evaluation of Precise Point Positioning (PPP) accuracy (Fig.1)
- 3-2) Reanalysis of PPP routine analysis results
- 3-3) Evaluation results of PPP accuracy using MADOCA products which were generated with different Solar Radiation Pressure models (SRP models) (Fig.2)

3-4) Investigation of PPP accuracy degradation events

4) Simulation of the Navigation system with Accurate G-sensor & Ion-thruster (NAGI) and Fitting processing to the broadcast ephemeris format

5) Ensemble clock simulation by using the clock ensemble software (CHRONOS) and it's evaluation (Fig.3)

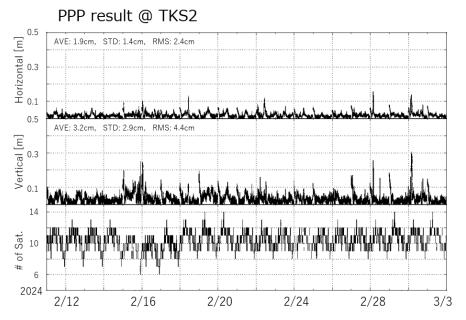


Fig. 1: The PPP results analyzed by using MADOCA products which generated using Tensor hybrid model (upper: Horizontal displacement [m], middle: Vertical displacement [m], lower: Number of satellites used in PPP analysis). We used JSS3 to improvement of Tensor hybrid model.

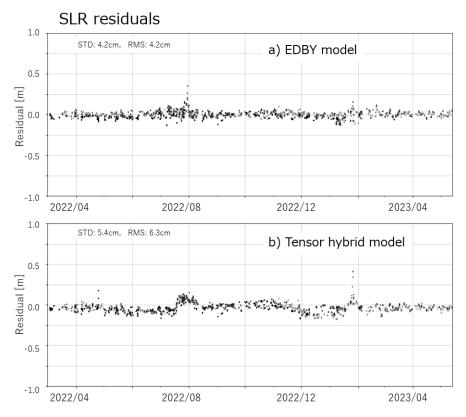


Fig. 2: Evaluation results of PPP accuracy using MADOCA products which were generated with different SRP models (SLR residuals). a) EDBY model and b) Tensor hybrid model.

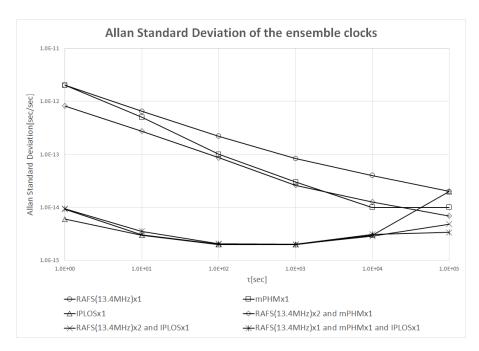


Fig. 3: Allan deviation results of the ensemble clocks which were calculated by
CHRONOS. Circle: Rubidium Atomic Frequency Standard (RAFS), Square: Mini
Passive Hydrogen Maser (mPHM), Triangle: Iodine Photonic Local Oscillator
System (IPLOS) that we are currently under development at Satellite Navigation
Unit. Rhombus, Cross, Asterisk: Ensemble clock results calculated from the
configurations shown in the legend.

Publications

N/A

- Usage of JSS
- Computational Information

Process Parallelization Methods	N/A
Thread Parallelization Methods	OpenMP
Number of Processes	1
Elapsed Time per Case	30 Minute(s)

• JSS3 Resources Used

Fraction of Usage in Total Resources^{*1}(%): 0.31

Details

Computational Resources		
System Name	CPU Resources Used (core x hours)	Fraction of Usage*2(%)
TOKI-SORA	0.00	0.00
TOKI-ST	0.00	0.00
TOKI-GP	0.00	0.00
TOKI-XM	0.00	0.00
TOKI-LM	0.00	0.00
TOKI-TST	2,431,120.35	39.86
TOKI-TGP	0.00	0.00
TOKI-TLM	712.07	2.00

File System Resources		
File System Name	Storage Assigned (GiB)	Fraction of Usage ^{*2} (%)
/home	1,119.00	0.93
/data and /data2	28,110.00	0.17
/ssd	0.00	0.00

Archiver Resources		
Archiver Name	Storage Used (TiB)	Fraction of Usage ^{*2} (%)
J-SPACE	0.00	0.00

*1: Fraction of Usage in Total Resources: Weighted average of three resource types (Computing, File System, and Archiver).

*2: Fraction of Usage : Percentage of usage relative to each resource used in one year.

• ISV Software Licenses Used

ISV Software Licenses Resources		
	ISV Software Licenses Used (Hours)	Fraction of Usage ^{*2} (%)
ISV Software Licenses (Total)	0.00	0.00

*2: Fraction of Usage : Percentage of usage relative to each resource used in one year.