粒子・格子ハイブリッド解析手法の研究

報告書番号:R22JCWU03 利用分野:連携大学院 URL:https://www.jss.jaxa.jp/ar/j2022/20621/

● 責任者

溝渕泰寛, 航空技術部門航空機ライフサイクルイノベーションハブ

● 問い合せ先

辻村光樹(早稲田大学)(hiroki-tsujimura@toki.waseda.jp)

● メンバ

辻村 光樹

● 事業概要

本事業は、液体燃料微粒化の新たな数値解析手法として、粒子・格子ハイブリッド解析手法を研究す る事業である. 粒子・格子ハイブリッド解析では、液体を粒子法(MPS 法、JAXA ソフトウェア Pflow), 気体を格子法(有限体積法、JAXA ソフトウェア FaSTAR)で交互に計算し、両者をユーザーら の空気力モデルで双方向連成する. 直交気流中における液体噴流分裂の計算をとおし、本解析手法の 妥当性を評価する.

● JAXA スーパーコンピュータを使用する理由と利点

本年度の液体噴流計算では, MPS 法の粒子数,有限体積法のセル数をそれぞれ約 1,000 万として おり,今後は粒子数・セル数を増大する予定である.また,現状では,粒子の管理にはバケットと呼ば れる直交格子を,粒子法と格子法の情報交換には別な直交格子を使用しており,解析プログラムのメ モリ使用量が大きい.さらに,粒子法と格子法の領域分割は別々に行っており一致しないため,粒子 法・格子法間の情報交換におけるプロセス間通信量が大きい.そこで,メモリが大きく,ノード間通信 が高速なスーパーコンピュータを利用することとした.

● 今年度の成果

今年度は 2 つの成果があった. 1 つめに, MPS 法による自由表面流れ計算において,表面張力 の効果を液体表面における圧力境界条件に与える surface tension as pressure (STP) モデルを考案し た.静止液滴と楕円形振動液滴の挙動計算をとおしてモデルを検証し,論文発表した(公表 [1]). 2 つめに, 粒子・格子ハイブリッド解析手法により,直交気流中における液体噴流微粒化をさまざまな 物理条件下で計算し,本解析手法の特性や適用範囲を調査した.液体噴流の流入速度に乱れを与える と,液柱分裂の進行が早まり,計算結果が実験に近づいた(図 1,公表 [2]).ウェーバー数を変化させ ると,液体噴流の分裂様式 bag, multimode, sheet-thinning がそれぞれ再現された.このとき,表面張力 STP モデルが結果の改善に貢献した.液気運動量比を変化させると,液柱軌道や噴霧の分布が実験に近い結果を得られた(図 2,公表 [3]).

z/D_i

 x/D_i

(a) M = 0.2, q = 84, We = 75

x/D

(b) *M* = 0.3, *q* = 39, *We* = 160

 x/D_i

(c) M = 0.4, q = 22, We = 280

● 成果の公表

-査読付き論文

[1] Tsujimura, H., Kubota, K., Sato, T., Applying surface tension as pressure boundary condition in free surface flow analysis by moving particle simulation method, Computational Particle Mechanics, Mar 2023. DOI: 10.1007/s40571-023-00575-0

-口頭発表

[2] 辻村光樹, 窪田健一, 佐藤哲也, 粒子・格子ハイブリッド法による乱流液体噴流の数値解析, 第27回計算工学講演会, A-05-04, 2022 年 6 月.

[3] Tsujimura, H., Kubota, K., Sato, T., Particle-grid hybrid analysis of liquid jet primary breakup in gaseous crossflow, 11th Asia Joint Conference on Propulsion and Power, AJCPP2023-095, Mar 2023.

-その他

辻村光樹,液体微粒化の粒子・格子ハイブリッド解析に向けた空気力と表面張力のモデル化,早稲田 大学博士学位論文,2023年2月.

● JSS 利用状況

● 計算情報

プロセス並列手法	MPI
スレッド並列手法	非該当
プロセス並列数	1 - 288
1 ケースあたりの経過時間	72 時間

● JSS3 利用量

総資源に占める利用割合**1(%): 0.11

内	訳
1 4	HV 📢

計算資源		
計算システム名	CPU 利用量(コア・時)	資源の利用割合 ^{*2} (%)
TOKI-SORA	0.00	0.00
TOKI-ST	875,059.99	0.87
TOKI-GP	0.00	0.00
TOKI-XM	0.00	0.00
TOKI-LM	3.71	0.00
TOKI-TST	0.00	0.00
TOKI-TGP	0.00	0.00
TOKI-TLM	0.00	0.00

ファイルシステム資源		
ファイルシステム名	ストレージ割当量(GiB)	資源の利用割合**2 (%)
/home	166.67	0.15
/data 及び/data2	2,666.67	0.02
/ssd	33.33	0.00

アーカイバ資源		
アーカイバシステム名	利用量(TiB)	資源の利用割合 ^{*2} (%)
J-SPACE	0.00	0.00

※1総資源に占める利用割合:3つの資源(計算,ファイルシステム,アーカイバ)の利用割合の加重平均 ※2資源の利用割合:対象資源一年間の総利用量に対する利用割合

● ISV 利用量

ISV ソフトウェア資源		
	利用量(時)	資源の利用割合 ^{*2} (%)
ISV ソフトウェア(合計)	0.00	0.00

※2 資源の利用割合:対象資源一年間の総利用量に対する利用割合