Flowfield around blades with optimized airfoil for six-roter Mars helicopter

Report Number: R21ECMP14 Subject Category: Competitive Funding URL: https://www.jss.jaxa.jp/en/ar/e2021/18287/

Responsible Representative

Yoshikazu Makino, Aeronautical Technology Directorate, Silent Supersonic Aircraft Team

Contact Information

Masahiro Kanazaki, Tokyo Metropolitan University(kana@tmu.ac.jp)

Members

Masahiro Kanazaki, Daisuke Kikuchi, Yuki Kishi, Keita Kimura, Masahiko Sugiura, Hideaki Sugawara, Kuniyuki Takekawa, Yasutada Tanabe

Abstract

In this project, a study was conducted to find the optimum blade shape for a 6-rotor helicopter for Mars exploration, The optimization method by Efficient Global Optimization and the airfoil definition method by Class Shape Transformation were employed. The two-dimensional calculation by FaSTAR was used for the evaluation during the optimization, and rFLow3D was used to evaluate the performance as a rotor blade. The aerodynamic performance of CLF5605 airfoil adopted by Ingenuity at NASA JPL was referenced and compared, and the airfoil named TMU21k3-1, which improved the aerodynamic performance was obtained.

Reasons and benefits of using JAXA Supercomputer System

In order to effectively employ the JAXA-provided tools, FaSTAR and rFlow3D, it was necessary to run on the JAXA supercomputer, which has many application examples and is well-tuned.

Achievements of the Year

The optimization method by Efficient Global Optimization and the airfoil definition method by Class Shape Transformation were employed. The two-dimensional calculation by FaSTAR was used for the evaluation during the optimization, and rFLow3D was used to evaluate the performance as a rotor blade. Referring to the aerodynamic performance of CLF5605 airfoil adopted by Ingenuity at NASA JPL, we were able to obtain an airfoil TMU21k3-1 which achived better hovering performance than that of CLF5605 (Figs. 1 and 2).

Fig. 1: Visualization results around 6-roter which employed the optimal airfoil, TMU21k3-01

Fig. 2: CT-FoM diagram of the roter blade airfoil designed this year. The optimal design of the blade airfoil has resulted in a blade airfoil that outperforms the existing airfoil (CLF5605). Figure of Merit was calculated by 3D calculation using rFlow3D.

Publications

N/A

Usage of JSS

• Computational Information

Process Parallelization Methods	MPI
Thread Parallelization Methods	OpenMP
Number of Processes	36
Elapsed Time per Case	96 Hour(s)

• JSS3 Resources Used

Fraction of Usage in Total Resources^{*1}(%): 0.31

Details

Computational Resources				
System Name	CPU Resources Used (core x hours)	Fraction of Usage ^{*2} (%)		
TOKI-SORA	445,107.73	0.02		
TOKI-ST	1,935,150.66	2.38		
TOKI-GP	0.00	0.00		
TOKI-XM	0.00	0.00		
TOKI-LM	583.66	0.04		
TOKI-TST	322,004.80	6.76		
TOKI-TGP	0.00	0.00		
TOKI-TLM	0.00	0.00		

File System Resources				
File System Name	Storage Assigned (GiB)	Fraction of Usage*2(%)		
/home	2,155.31	2.14		
/data and /data2	32,767.23	0.35		
/ssd	1,668.94	0.43		

Archiver Resources		
Archiver Name	Storage Used (TiB)	Fraction of Usage ^{*2} (%)
J-SPACE	10.76	0.07

*1: Fraction of Usage in Total Resources: Weighted average of three resource types (Computing, File System, and Archiver).

*2: Fraction of Usage : Percentage of usage relative to each resource used in one year.

• ISV Software Licenses Used

ISV Software Licenses Resources				
	ISV	Software	Licenses	Fraction of Usage*2(%)
	Used			
	(Hours)			
ISV Software Licenses	51.68		51 60	0.04
(Total)			31.08	0.04

*2: Fraction of Usage : Percentage of usage relative to each resource used in one year.