Precise Orbit Determination by using MADOCA on JSS2

Report Number: R19ER0800

Subject Category: Space Technology

URL: https://www.jss.jaxa.jp/en/ar/e2019/11620/

Responsible Representative

Koichi Inoue, Space Technology Directorate I, Satellite Navigation Unit

Contact Information

Hiroshi Takiguchi(takiguchi.hiroshi@jaxa.jp)

Members

Hiroshi Takiguchi, Sho Miyoshi

Abstract

Satellite Navigation Unit has been generating the precise orbit and clock products of GNSS satellites by using MADOCA (Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis), and been distributing to user via network routinely. On the JSS2, we aim to realize fast computation for the long-term data analysis and simulation.

Ref. URL: https://ssl.tksc.jaxa.jp/madoca/public/public index en.html

Reasons and benefits of using JAXA Supercomputer System

To improve the MADOCA products accuracy, we need to do long-term data analysis. By using JSS2, we have been expecting the reduction of the data analysis time.

Achievements of the Year

SNU has been generating and providing the precise orbit and clock products of GNSS satellites by using MADOCA on the general-purpose PC routinely.

In this fiscal year, we carried out the following tests related to the improvement of routine precise orbit determination (POD);

1) Generation of the Ultra-Rapid product every single hour.

In routine operation, we generate the Ultra-Rapid product every 6 hours due to the ability of a general-purpose PC, but we confirmed that we could generate it every single hour by using JSS2.

2) Routine real-time POD.

We adjusted the real-time data communication environment between JSS2 and our general-purpose PC, and tried real-time POD. We confirmed that real-time POD was possible without any problem.

3) Identification of malfunction of real-time POD.

We performed the re-analysis and identified the malfunction of real-time POD. We confirmed that by using JSS2

enabled high-speed calculations and reduced time.

4) Validation of the GNSS system combination on simultaneous real-time POD.

In routine operation, we carry out simultaneous real-time POD with the combination of GPS, GLONASS, and QZSS system due to the ability of a general-purpose PC. We confirmed that even if Galileo was added to this combination, it could be done without any problem.

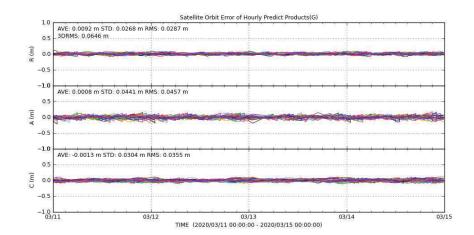


Fig. 1: The evaluation results of the predicted part in the Ultra-Rapid products which generaed every single hour with reference to the IGS Rapid products. From the top, Radial, Along and Cross components.

Publications

N/A

Usage of JSS2

Computational Information

Process Parallelization Methods	N/A
Thread Parallelization Methods	OpenMP
Number of Processes	1
Elapsed Time per Case	30 Minute(s)

Resources Used

Fraction of Usage in Total Resources*1(%): 0.05

Details

Computational Resources				
System Name	Amount of Core Time (core x hours)	Fraction of Usage*2(%)		
SORA-MA	0.00	0.00		
SORA-PP	23.01	0.00		
SORA-LM	0.00	0.00		
SORA-TPP	71,634.01	4.32		

File System Resources				
File System Name	Storage Assigned (GiB)	Fraction of Usage*2(%)		
/home	100.14	0.08		
/data	2,584.46	0.04		
/ltmp	1,953.13	0.17		

Archiver Resources		
Archiver Name	Storage Used (TiB)	Fraction of Usage*2(%)
J-SPACE	0.00	0.00

^{*1:} Fraction of Usage in Total Resources: Weighted average of three resource types (Computing, File System, and Archiver).

^{*2:} Fraction of Usage: Percentage of usage relative to each resource used in one year.