Research on the performance improvement of practical aero-engine fuel injector

Report Number: R19EBA30200

Subject Category: Aeronautical Technology

URL: https://www.jss.jaxa.jp/en/ar/e2019/11563/

Responsible Representative

Takashi Yamane, Aeronautical Technology Directorate, En-Core Pre-project team

Contact Information

Kazuaki Matsuura, Japan Aerospace Exploration Agency, Aeronautical Technology Directorate, En-Core Project team(matsuura.kazuaki@jaxa.jp)

Members

Kazuaki Matsuura, Mitsumasa Makida, Naoki Nakamura, Jun Iino, Huilai Zhang, Kinya Saito, Kunihiko Sakata, Asuka Akino, Toshio Matsuno, Harumi Toriyama

Abstract

Our study is focusing on the improvement of fuel injector performance. Numerical simulations on air-flow, atomization, fuel/air mixing, combustion, and thermal analysis on such injectors in realistic shapes are of our interest.

Reasons and benefits of using JAXA Supercomputer System

In order to analyze air-flow, atomization, fuel/air mixing, combustion, and thermal analysis of a realistic shape fuel nozzle precisely, we conduct the flamelet combustion analysis using large size of database, and the use of super computer is necessary.

Achievements of the Year

A numerical simulation on an aero-engine lean-staged fuel injector was performed for a condition at which combustion oscillation was observed in our experiment. It was also observed in the CFD result as shown in the figures below.

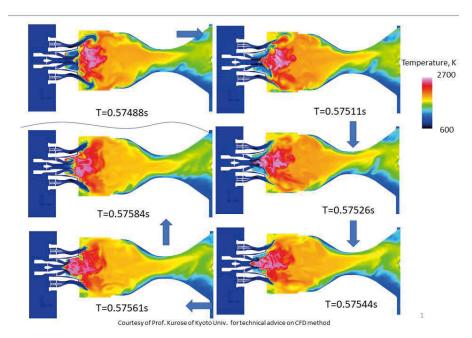


Fig. 1: Time evolution of temperature distribution during an oscillation cycle.

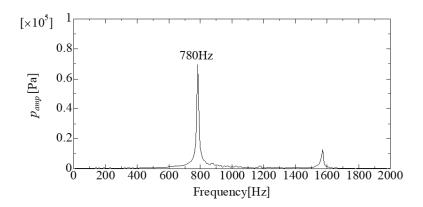


Fig. 2: Frequency spectrum of pressure in the combustion chamber.

Publications

N/A

Usage of JSS2

• Computational Information

Process Parallelization Methods	MPI
Thread Parallelization Methods	N/A
Number of Processes	512
Elapsed Time per Case	104 Hour(s)

Resources Used

Fraction of Usage in Total Resources*1(%): 0.96

Details

Computational Resources			
System Name	Amount of Core Time (core x hours)	Fraction of Usage*2(%)	
SORA-MA	8,597,280.89	1.04	
SORA-PP	0.00	0.00	
SORA-LM	0.00	0.00	
SORA-TPP	0.00	0.00	

File System Resources				
File System Name	Storage Assigned (GiB)	Fraction of Usage*2(%)		
/home	381.56	0.32		
/data	44,675.39	0.76		
/ltmp	13,495.17	1.15		

Archiver Resources		
Archiver Name	Storage Used (TiB)	Fraction of Usage*2(%)
J-SPACE	0.11	0.00

^{*1:} Fraction of Usage in Total Resources: Weighted average of three resource types (Computing, File System, and Archiver).

^{*2:} Fraction of Usage: Percentage of usage relative to each resource used in one year.