Development of Aerodynamic Optimization Library: Harmonee

Report Number: R19EA3202

Subject Category: Aeronautical Technology

URL: https://www.jss.jaxa.jp/en/ar/e2019/11530/

Responsible Representative

Takashi Aoyama, Aeronautical Technology Directorate, Numerical Simulation Research Unit

Contact Information

Mami Hayakawa(hayakawa.mami@jaxa.jp)

Members

Shigeru Kuchiishi, Takashi Ishida, Atsushi Hashimoto, Masahiro Kanazaki, Kohji Suzuki, Minoru Yoshimoto, Shinsuke Nishimura, Kei Nakanishi, Yukinori Morita, Takuya Ogura, Kyohei Sawada, Kazufumi Uwatoko, Tetsuji Ogawa, Mami Hayakawa

Abstract

An aerodynamic optimization library "Harmonee," which uses the unstructured CFD code FaSTAR, is develped and its validity and efficiency are examined. A Multi-Objective Evolutionary Algorithm (MOEA) is employed as an aerodynamic optimization method. This tool is aimed to enable the direct evolutionary computing to perform within a practical computational time by utilizing the high speed performance of FaSTAR. In the present project, basic programs are developed and validated using JSS2.

Reasons and benefits of using JAXA Supercomputer System

Aerodynamic optimization using an evolutionary algorithm requires a number of high-fidelity and large-scaled computations (3D RANS analysis) and needs to use the supercomputer.

Achievements of the Year

We validated our Harmonee module by applying it to a coupled aero-structure optimization problem which satisfies three objectives and two constraints shown in Fig. 2, according to the flowchart shown in Fig. 1.

Fig. 1: Flowchart of coupled aero-structure optimization problem

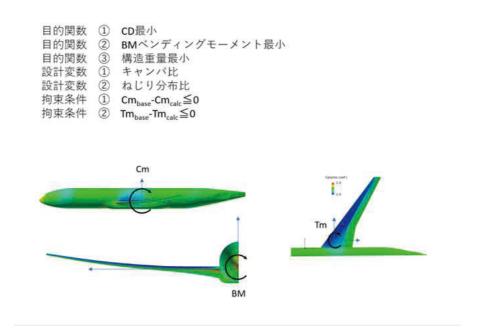


Fig. 2: Optimization problem for NASA Common Research Model

Publications

N/A

Usage of JSS2

• Computational Information

Process Parallelization Methods	MPI
Thread Parallelization Methods	Automatic Parallelization
Number of Processes	128
Elapsed Time per Case	2 Hour(s)

Resources Used

Fraction of Usage in Total Resources*1(%): 0.20

Details

Computational Resources				
System Name	Amount of Core Time (core x hours)	Fraction of Usage*2(%)		
SORA-MA	1,482,708.63	0.18		
SORA-PP	26,609.96	0.17		
SORA-LM	12,495.92	5.22		
SORA-TPP	0.00	0.00		

File System Resources				
File System Name	Storage Assigned (GiB)	Fraction of Usage*2(%)		
/home	865.85	0.72		
/data	63,084.64	1.08		
/ltmp	9,528.06	0.81		

Archiver Resources		
Archiver Name	Storage Used (TiB)	Fraction of Usage*2(%)
J-SPACE	0.33	0.01

^{*1:} Fraction of Usage in Total Resources: Weighted average of three resource types (Computing, File System, and Archiver).

^{*2:} Fraction of Usage: Percentage of usage relative to each resource used in one year.