# Post-K Priority Issue 8D: Research and development of core technology to innovate aircraft design and operation

Report Number: R18ECMP06 Subject Category: Competitive Funding URL: https://www.jss.jaxa.jp/en/ar/e2018/9112/

### Responsible Representative

Yuko Inatomi, Institute of Space and Astronautical Science, Department of Interdisciplinary Space Science

## Contact Information

Ryoji Takaki (ryo@isas.jaxa.jp)

#### Members

Ryoji Takaki, Taku Nonomura, Seiji Tsutsumi, Yuma Fukushima, Soshi Kawai, Ikuo Miyoshi, Satoshi Sekimoto, Hiroshi Koizumi, Tomohide Inari, Ryota Hirashima, Yoshiharu Tamaki, Takuya Karatsu

#### Abstract

We develop a high-speed/high-precision computational program using a quasi-first principle method, which can faithfully reproduce the actual flight environment to understand the true nature of fluid phenomena. Specifically, we develop a high-precision compressible flow solver with geometric wall models and LES (Large Eddy Simulation) wall models based on hierarchical, orthogonal and equally spaced structured grids.

Ref. URL: http://www.postk-pi8.iis.u-tokyo.ac.jp/sub\_d.html

#### Reasons for using JSS2

We need large computer like JSS2 because our calculations must be large scale computations. Moreover, JSS2 has a similar architecture to the our target computer called Post-K.

#### Achievements of the Year

We proceeded with the development of a compressible fluid analysis program FFVHC - ACE using a hierarchical, orthogonal and equally spaced structured grid method. In this fiscal year, a trial calculation for the aircraft of the actual detailed shape (JSM\_CRM\_LEG model) was performed using the immersed boundary method. Figure 1 is the computational grid for the JSM\_CRM\_LEG model. Figure 2 shows the object surface of the landing gear expressed in the flow solver. The reproducibility of the object surface is improved as the grid resolution improves. Figure 3 shows the vorticity around the JSM\_CRM\_LEG model, where Mach number is 0.2, the Reynolds number is 10<sup>6</sup>, and attack angle is 7 degrees. The total number of grid points is about 800 million, of which the number of fluid points is about 600 million.



Fig. 1: The hierarchical, orthogonal and equally spaced structured grid around the JSM\_CRM\_LEG model.



Fig. 2: Shape reproducibility of complicated geometry.



Fig. 3: Flow around the JSM\_CRM\_LEG model. (Video. Video is available on the web.)

## Publications

- Oral Presentations

R. Takaki, Toward the achievement of the aerodynamic characteristic evaluation for real configurations and real flight environments of aircraft, 4rd Symposium on Post-K computer Priority Issue 8.

## - Other

Ryoji Takaki, How to make an aerospace vehicle with supercomputer !? - Roles of supercomputer in manufacturing -, 13th symposium to know K-computer in Mito - From K-computer to Post-K computer.

# Usage of JSS2

# • Computational Information

| Process Parallelization Methods | MPI          |
|---------------------------------|--------------|
| Thread Parallelization Methods  | OpenMP       |
| Number of Processes             | 256 - 600    |
| Elapsed Time per Case           | 120 Hour (s) |

# • Resources Used

Fraction of Usage in Total Resources<sup>\*1</sup> (%): 3.88

# Details

| Computational Resources |                                       |                                     |  |  |
|-------------------------|---------------------------------------|-------------------------------------|--|--|
| System Name             | Amount of Core Time<br>(core x hours) | Fraction of Usage <sup>*2</sup> (%) |  |  |
| SORA-MA                 | 36,154,361.50                         | 4.43                                |  |  |
| SORA-PP                 | 6,470.46                              | 0.05                                |  |  |
| SORA-LM                 | 0.00                                  | 0.00                                |  |  |
| SORA-TPP                | 0.00                                  | 0.00                                |  |  |

| File System Resources |                        |                         |  |
|-----------------------|------------------------|-------------------------|--|
| File System Name      | Storage Assigned (GiB) | Fraction of Usage*2 (%) |  |
| /home                 | 2,181.51               | 2.26                    |  |
| /data                 | 33,258.50              | 0.59                    |  |
| /ltmp                 | 12,472.17              | 1.07                    |  |

| Archiver Resources |                    |                         |
|--------------------|--------------------|-------------------------|
| Archiver Name      | Storage Used (TiB) | Fraction of Usage*2 (%) |
| J-SPACE            | 36.60              | 1.28                    |

<sup>\*1</sup>: Fraction of Usage in Total Resources: Weighted average of three resource types (Computing, File System, and Archiver).

\*2: Fraction of Usage: Percentage of usage relative to each resource used in one year.