Numerical Study on Rotor Performance of Mars Helicopter

Report Number: R18EACA41 Subject Category: JSS2 Inter-University Research URL: https://www.jss.jaxa.jp/en/ar/e2018/9109/

Responsible Representative

Makoto Sato, Associate Professor, Kogakuin University

Contact Information

Makoto Sato, Kogakuin University (msato@cc.kogakuin.ac.jp)

Members

Makoto Sato, Daichi Ogasawara, Yodai Suzuki

Abstract

Mars helicopter project is now going. Since the atmospheric density on Mars is about 1/100, the sound of speed is about 3/4 compared with those on Earth, we need to develop the high performance heli-rotor. In JAXA, the experimental measurements of the heli-rotor performance at low-Reynolds number condition have been conducted. In the present research, we conduct numerical simulations on the rotational flat-plate-airfoil flow in order to clarify the characteristics of the flow field.

Reasons for using JSS2

We need to conduct the large-scale simulations on the rotational wing flow using "rFlow3d", which has been developed in JAXA.

Achievements of the Year

We have conducted the numerical simulation on the rotational flat-plate-airfoil flow. The computational object and conditions are decided based on the experiments at Tohoku University[1].

Figure 1 shows the schematic diagram of computational objects. The computational parameters are the Reynolds number (3,870-77,300), angle of attack (0-30) and aspect ratio (2-4). Here, the results of AR=4 cases are shown. The flow solver is rFLow3D, which has been developed at JAXA.

Figure 2 shows the coefficients of thrust and torque with experimental data. The simulation results are good agreement with those of experiment, except for the large angle of attack cases. Figure 3 shows vortex structures around flat-plate-airfoil. The leading-edge vortex and tip vortex can be observed. These vortices are interacted with each other. Figure 4 shows the coefficients of surface friction with experimental data. The simulation results are good agreement with that of experiment.

These results indicate that the present simulations are sufficiently reliable.

[1] Okoucuhi, M. "Experimental research on aero-characteristics of rotor at low-Reynolds number condition", Master Thesis of Tohoku University, (2013).

Fig. 1: Schematic diagram of computational object

レイノルズ数 3870

Fig. 2: Thrust and torque coefficients

Fig. 3: Vortex structures around airfoil

Fig. 4: Friction coefficients

Publications

- Oral Presentations

Daichi Ogasawara, Makoto Sato, Yasutada Tanabe, Hideaki Sugawara, "Numerical simulations on rotational flat-plate-airfoil flow using rFlow3D", 1st Symposium on Mars helicopter, 2019.

Usage of JSS2

• Computational Information

Process Parallelization Methods	N/A
Thread Parallelization Methods	OpenMP
Number of Processes	1
Elapsed Time per Case	400 Hour (s)

• Resources Used

Fraction of Usage in Total Resources^{*1} (%): 0.17

Details

Computational Resources				
System Name	Amount of Core Time (core x hours)	Fraction of Usage ^{*2} (%)		
SORA-MA	881.82	0.00		
SORA-PP	269,181.44	2.15		
SORA-LM	0.00	0.00		
SORA-TPP	0.00	0.00		

File System Resources				
File System Name	Storage Assigned (GiB)	Fraction of Usage*2 (%)		
/home	19.07	0.02		
/data	19,531.26	0.34		
/ltmp	3,906.25	0.33		

Archiver Resources		
Archiver Name	Storage Used (TiB)	Fraction of Usage*2 (%)
J-SPACE	0.00	0.00

^{*1}: Fraction of Usage in Total Resources: Weighted average of three resource types (Computing, File System, and Archiver).

*2: Fraction of Usage: Percentage of usage relative to each resource used in one year.