Research on the performance improvement of practical aero-engine fuel injector

Report Number: R18EA0730 Subject Category: Aeronautical Technology URL: https://www.jss.jaxa.jp/en/ar/e2018/9063/

Responsible Representative

Takashi Yamane, Aeronautical Technology Directorate, En-Core Pre-project team

Contact Information

Kazuaki Matsuura, Japan Aerospace Exploration Agency, Aeronautical Technology Directorate, En-Core Preproject team (matsuura.kazuaki@jaxa.jp)

Members

Kazuaki Matsuura, Mitsumasa Makida, Naoki Nakamura, Jun Iino, Huilai Zhang, Kinya Saito, Kunihiko Sakata, Asuka Akino

Abstract

Our study is focusing on the improvement of fuel injector performance. Numerical simulations on air-flow, atomization, fuel/air mixing, combustion, and thermal analysis on such injectors in realistic shapes are of our interest.

Reasons for using JSS2

In order to analyze air-flow, atomization, fuel/air mixing, combustion, and thermal analysis of a realistic shape fuel nozzle precisely, we conduct the flamelet combustion analysis using large size of database, and the use of super computer is necessary.

Achievements of the Year

Effects of pilot nozzle design on the performance of a lean-staged fuel injector near a lean-blow-out condition was simulated. Blow-out took place for "U8-type" nozzle, whereas it did not for "D8-type" nozzle.

Fig. 1: Lean staged injector

Fig. 2: Magnified view of pilot nozzle (Left: U8. Right: D8)

Courtesy of Prof. Kurose of Kyoto Univ. for technical advice on CFD method

Fig. 3: Time evolution of spatial distribution of gas temperature (Left: U8, Right: D8)

Publications

N/A

Usage of JSS2

• Computational Information

Process Parallelization Methods	MPI
Thread Parallelization Methods	N/A
Number of Processes	512
Elapsed Time per Case	4 Hour (s)

• Resources Used

Fraction of Usage in Total Resources^{*1} (%): 1.02

Details

Computational Resources				
System Name	Amount of Core Time (core x hours)	Fraction of Usage ^{*2} (%)		
SORA-MA	9,286,721.23	1.14		
SORA-PP	0.00	0.00		
SORA-LM	0.00	0.00		
SORA-TPP	0.00	0.00		

File System Resources		
File System Name	Storage Assigned (GiB)	Fraction of Usage*2 (%)
/home	360.90	0.37
/data	42,857.05	0.76
/ltmp	9,263.40	0.79

Archiver Resources		
Archiver Name	Storage Used (TiB)	Fraction of Usage*2 (%)
J-SPACE	0.11	0.00

^{*1}: Fraction of Usage in Total Resources: Weighted average of three resource types (Computing, File System, and Archiver).

*2: Fraction of Usage: Percentage of usage relative to each resource used in one year.